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An EM-Based Forward-Backward Kalman Filter for the  3) Semi-blind estimation: Semi-blind techniques are a hybrid of

Estimation of Time-Variant Channels in OFDM blind and training based techniques, utilizing pilots and other natural
constraints to perform channel estimation (see for example [3],
Tareq Y. Al-Naffouri [19],[21], [22], [24], [27]).

4) Data-aided channel estimation:The main and perhaps the only
lati ) h  hiah achi reason to perform channel estimation at the receiver is to use the
Abstract—OFDM modulation combines the advantages of high achiev- o imate along with the channel output to recover the transmitted
able rates and relatively easy implementation. However, for proper .
recovery of the input, the OFDM receiver needs accurate channel dat_a. One can, in turn, use_the (_jetected Qata to enhance the channel
information. In this paper, we propose an expectation-maximization EM)  estimate giving rise to an iterative technique for channel and data
algorithm for joint channel and data recovery in fast fading environments. recovery. With this in mind, it is natural for the two operations
The algorithm makes acollectiveuse of the data and channel constraints of channel and data recovery to be considered jointly, especially
inherent in the communication problem. This comes in contrast to . . b d h h f ’ f th
other works which have employed these constraints selectively. The since One_ OPer?‘t_'O” F:an .e used to 'en ancgt € per ormaﬁce_o the
data constraints include pilots, the cyclic prefix, and the finite alphabet Other. This intuitive idea is the basis of joint channel estimation
restriction, while the channel constraints include sparsity, finite delay and data detection proposed in [21], [22], [28]. Other works, like
spread, alnd_ th)e Tsr:atislﬂca_l hpfoge_rltie; of the ?haﬂnglb(ffiquegcz":g)”d [24], [29], and [2], arrived at iterative techniques more rigorously
time correlation). The algorithm boils down to a forward-backwar : . A .
Kalman filter. We also suggest a suboptimal modification that is able to by em_ploylng the expectatlon-maXImlzathn (EM) algorithm. _The_
track the channel and recover the data with no latency. Simulations show data-aided approach seems the most sensible for channel estimation,
the favorable behavior of both algorithms compared to other channel especially when the channel is time variant.
estimation techniques. The aforementioned works utilizenly a subsebf the constraints
Index Terms—OFDM, time-variant channels, channel modelling, fre- on the channel and data. In this paper, however, we present a (data-
quency correlation, time correlation, channel estimation, Kalman filters, aidedEM) method that can make use of all the constraints in Table |
expectation-maximization algorithm. The method boils down to a forward-backwaiB) Kalman filter
which we derive in Section Ill. One consequence of our approach is
the increased storage and latency requirements of Bi&alman as
o . . . it has to process multipl©®FDM symbols simultaneously. We thus
Orthogonal frequency division multiplexingdFDM) is an effec-  suggest in Section IV a suboptimal forward-only version (basically
tive technique for high bit-rate transmission. It has found widespreadkalman filter) that is able to perform channel recovery with no
applications and is already part of many standards (e.g. 802.11aflfgncy. These two algorithms are compared and benchmarked in our

and 802.11a/eJOFDM combats intersymbol interference by prependsimulations in Section V. We start by introducing our notation and

ing a guard band (cyclic prefix) to the transmitted symbol. Thighe system model.

effectively divides the channel into many narrowbd8dfree chan-

nels over which parallel streams of data are transmitted. Frequency

selectivity can now be mitigated using one tap equalizers. For pro;?ér

operation of arOFDM receiver, it needs an accurate estimate of the We denote scalars with small-case letters, vectors with small-case

channel state. For rapidly time-variant channels, the receiver fadeddface letters, and matrices with uppercase boldface letters. We

the additional challenge of performing channel (and data) recovealgso reserve calligraphic notation (e.gk, and X) for variables in

for eachOFDM symbol. In carrying out these two operations, th¢he frequency domain. The individual entries of a variable hkare

receiver takes advantage of the rich structure of the underlyidgnoted byh(l). When any of these variables becomes a function

communication problem. This structure can be traced back to sowfetime, the time index appears as a subscript (e.g., we write

inherent constraints on the data or on the channel. Table | ligtg(l), h;, and X; ), and use the notatioh? to denote the sequence

the most common of these constraints and some of the works that, h,, -, hy).

employed them. We also maintain the following conventions: 1) a hat over a variable

indicates an estimate of the variable (efg.is an estimate oh), 2)

all vectors are column vectors, 3) all underlined vectors are of length

P (e.g., the cyclic prefixe,) or of length P + 1 (e.g., the impulse
Several algorithms have been suggested in literature for Chanﬂéﬂpons@i), 4) all vectors with no bars are of lengffi (e.g., X),

estimation inOFDM transmission. Each of these algorithms makegnd 5) all overlined vectors are of lengii + P (e.g.,Z:).

use of a subset of the constraints in Table |. These algorithms can be

classified into one of the following categories

1) Training-based estimation: Pilots are used to perform channel

I. INTRODUCTION

Notation

A. Approaches to channel estimation@FDM

Il. SYSTEM MODEL

estimation as in [11] and [14]. Consider theid sequencet™ ™" = (A1, Xa, -, Xriyw) 1
2) Blind estimation: At the other extreme, blind algorithms relybe transmited. In at©FDM syste;n, the sequence is parsed into a
completely on natural constraints inherent in the communicati@@dquence of’+ 1 data symbols¥y = (X, X1,---, X'r) each of

problem to perform channel recovery. For example, [3] used frength N. Each symbol¥’; undergoes afDFT operation to produce
quency correlation and code, [5] used the cyclostationarity inducBte time domain symbak; = @Cgif}:@y&here() is the N x N
by the cyclic prefix and transmitter precoding, [26] used a subspad&T matrix for whichg; ., = e ™~ ~ . The transmitter then
constraint, and [6] used the cyclic prefix.
lWhen the channel is time invariant, a data aided approach helps reduce

Manuscript received January 20, 2002; revised November 18, 2002. the number of pilots needed for channel estimation.

T.Y. Al-Naffouri is with the Electrical Engineering Department, King Fahd 2Due to space limitation, we do not elaborate on how the algorithm makes
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. E-maiise of the code and sparsity. However, the algorithm can incorporate these
naffouri@kfupm.edu.sa. constraints in a straightforward manner [30].
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TABLE |
Data and channel constraints used for channel estimation
[[ CONSTRAINTS [[ ASSUMPTIONS | REFERENCE ]
Finite alphabet constraint [1], [2]
bata C'Ic')riismit precoding =L 4
Constraint
onstraints (e.g., cyclic prefix,silent guard band) (51, [6]. [7]. 8], 3], [3]
Pilots [10], [11], [12],[13],[14]
Finite delay spread [5], [3], [11]
Channel Sparsity [15], [16], [17]
Constraints Frequency correlation [18],[19], [3]
Time correlation [20], [21], [22], [23], [24]
Uncertainty information [25], [18]
appends a cyclic prefixdP) z, (of length P) to x;, resulting finally I1l. THE EM ALGORITHM FORJOINT CHANNEL AND DATA
in a sequence of super-symbaig each of lengthV + P. ESTIMATION

We assume that the channgl, (of maximum lengthP + 1) A. The EM algorithm
remains fixed over a give@FDM symbol (and its associatedP) '

but varies from one symbol to the next according to a state-spacddeally, we estimatés; using somel/O relationship, e.g. (3), by
model maximizing the corresponding log-likelihood function

~ MAP
b, = Fh, + Gu;, hy~N(0,IL), u, ~N(0,02I)| (1) h; =argmax {Inp(Y:i|Xs, h;) +Inp(h;)}

The matricesF’ and G in (1) are square matrices of siZ¢ + 1 For example, when the channel obeys th@ relationship (3) (so
and are assumed available to the receiver. In the Appendix, Wt Inp(Y;| X, h;) = —||¥; — X:h;||>_» up to some additive
show how we can construct such a model from the knowledge @nstant) anch, is N/(0,1I), (so that]npc(nhi) = —||h;||3-: up to

the Doppler frequency (time-correlation), the power-delay profil§ome additive constant), in this case, MAP estimate is given by
(frequency-correlation), and the receive filter. At the channel output,

we obtain a sequence of time-domain super-sympglswhich after h; = argmin { 1Y: — Xihi||i;2 + Hhil\%fl}

stripping the cyclic prefiXyi, produce a sequence of time-domain o

symbolsy?’. The input/output(O) relationship of the@OFDM system  In our case, however, the input; (or X; ) is not observable.

is best described in the frequency domain Thus, we use the expectation-maximization algorithm and maximize

] ] instead an averaged form of the log-likelihood function. Specifically,

Y; = diag(X:)Hi + N = diag(X:)Qp b, + N starting from an initial estimat@z(.o), the estimateh, is calculated

whereN’; ~ N (0,021) is the additive noise. The second equality iriteratively, with the estimate at thgth iteration given by

(2) follows from theDFT relationship; = Q { ﬁi } =Qruhi b =argmax{E, oo Inp(VilXi,h,) + np(h,) }

where@ ., consists of the firsP +1 columns ofQ. Alternatively, o e

with X, A diag(X:)Q@p, . We can write Thus, for the example above, tHeM-based estimate (at thgth

iteration) is given by
3 O .
® A = argmin {9~ BIXIRIZ o+ o) + Bl )
A similar relationship exists between the cyclic prefixes at the input -
and the output where the two moments oK ; are taken given the outp@yy; and

the most recent channel estimdjéjfl). We now derive theEM
(4) algorithm for the time-variant case.

’yi:Xihi‘FNi

where X, is a P x (P + 1) Toeplitz matrix constructed from the
vector of cyclic prefixesz] |,z ]”. By concatenating (3) and (4), B. TheEM-based forward-backward Kalman

we obtain the total input/output relationship Consider theOFDM system of section 2, essentially described by

the state-space model

Y. =Xh,+N; (%)
) . ) 7
which incorporates the effect of t@FDM symbol as well as the B, Fh; + Gu; (7)
cyclic prefix observation. Yi = Xih,+N; (8)
with b, ~ N(0,TIo) andu; ~ N(0,021). Given a sequence Gf+
A. Pilot/output relationships 1 input and output symbolX I andy?’, we obtain theVMAP estimate

) . . of the channel sequen@% by maximizing the log-likelihood
In general, the receiver needs pilots to obtain initial channel

estimates. Let the index sé} = {i1,i,...,iz,} denote the pilot L =Inp(¥5|X5,hg)+Inp(hg)
locations within theOFDM symbol. Also, letX ;, denote the matrix
X pruned of the rows that do not belongi Then, the pilot/output ~ We use the weighted norfi||$; to denoteh*Sh.

equation can be derived from th relationship (3) as “Since X; = diag(X'i)Qp.,, conditioning onX’; can be replaced by
conditioning onX ;.
Vir. =Xir.h, + Ni; (6) 5The CovarianceCov[X}] is defined asCov[X}] = E[X!X;] —
P p— 13
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Now, using (8), we can express the first term of the log-likelihoothaximizing the averaged log-likelihood functidh= EXOTmT,yTL‘

(up to some additive constant) as By inspecting (10), we note that the only term that is modified under
T expectation is the first summand, and its expectation is given by
T 4T 4T _ ¥ B
lnp(yo |X07h0) - ;h’lp(yl‘xl’bl) EH)’Z—X1QZ||2% = Hy'L_E[Xl}thQ% +||E'L||2%COV[X7*]
T 2 n n 2
_ 2 _ Y | E[X]
= X ol DA A TN

“n

Similarly, using (7), we can express the second term (again UPiere the expectations are taken given the most recent estimate

some additive constant) as ﬁéﬁl) and the output symbol®Z". We thus have
T

lnp(QOT) = ZIUP(QJQFHJFIUP(QO) y

=1

T
SO DI N S| WA ©)
k=1 u

T 2

[ 0}3:; ] - [ CO;E[[))((;}]” ? ]Ei 1

n

T
>l = Fhi 1%, goe = llhollf-r (18)
i=1 “u

=0

Combining these two expressions yields
Note that we can obtain the averaged likelihood (18) from the original

T
likelihood (10) b forming th bstituti
ﬂz—ZH'yi—Xh-HiQ—HQoHZHO—l— ikelihood (10) by performing the substitution
i=0 T E[X ;] Vi
: 2 =L eaein | ¥ =[]
Yok = Fhy | o (10) _
im1 o3 We can thus state the following theorem.

Since the channel sequendg; is jointly Gaussian, theMAP Theorem 2:Channel estimation-Unknown input caseConsider
estimate of the channel sequence given the input and output sequeffé@state-space model (7)—(8) and assume that the receiver does not
XT and YT is the same as theIMSE estimate given the same have. access to t(t})e transmitted dx&l. Thg chann.el estimate at.the
sequences. THIMSE estimate itself is obtained by tife8 Kalman J-th iteration hg " of the EM algorithm is obtained by applying
filter. This allows us to state the following theorem (for a proof, se&€ forward-backward Kalman (11)—(17) to the following state-space

problem 10.9 in [31]). model
Theorem 1:Channel estimati_on—Know_n input caseConsider the h.., = Fh,+Gu, (19)
state-space model (7)—(8). Given the input and output sequences ¥, F[X] N,
X{ and Y7, the MAP (or equivalently MMSE) estimate ofh_’ [ o : ] = [ G X*/L 12 }Qﬁr { ‘ } (20)
is obtained by applying the following (forward-backward Kalman) Pl ov[X] n;
filter to the state-space model (7)—(8) wheren, ~ N (0px1,021) is virtual noise that is independent of
Forward run: Starting from the initial conditiond?y_; = ITp and the physical noiseV’;.
hy_, =0andfori=1,...,T, calculate To fully implement theEM algorithm, we need to initialize the
R.; = o Inip+ XiP; ;11X (11) algorithm and calculate the first and second moments of the input—
K, = Piu_lX?RQ} (12) two steps which we perform next.
Ei\i = (IN+P - Kf,iXi)ﬁiufl + Kf,iyi» (13)
@z’-p-l\i = Fhm (14)

* * 1 * it i 1
P, = Fi(Pji-1—K;iR.:K};) F +J—2GG (15) C. Initial channel estimation

Backward run: Starting fromAz,yr = 0 and fori = 7,7 — We can obtain the initial channel estimate from the pilot/output
1,...,0, calculate equation (6). We do this by applying tieB Kalman to the state-
Air = (Ipsn — XIK5) Fidipyr + space model
xR} (Y- Xiby ) (16) hi, = Fh +Gu, (21)
. . ir. = Xirh, +N: 22
hi\T = hih’—l + Pi\i—lAi\T (17) y o i fe ( )

. . . i.e., by applying theFB Kalman (11)—(17) with the substitutions

The desired estimate @HT. . . X — Xi; and ¥, — Y,

The FB Kalman obtains th&1AP estimate of the channel impulse ° v
response. In the forward step, the filer obtains M#&P estimate of
h; given X'}. Our aim, however, is to obtain thdAP estimate of
h, given the whole sequencX{. The backward step obtains the
contribution oinT+1 to the MAP estimate ofh,. D. Calculating the input moments

Theorem 1 allows us to obtain the estimatehgf when the input
sequenceX ! is not observable with the help of the expectation Using the relationshipgX ; = diag(X;)Qp.,, we can write
maximization EM) algorithm. Specifically, in th&M algorithm, we
maximize the log-likelihood (10pveragedover the sequenc& (. BIXi|Yi, Hi diag(E[X:|Y:, Hi)Qpy  (23)
Thus, thej-th iteration of theEM algorithm is now obtained by Cov[X|¥;, Hi Qp 1 Cov[X]| Vi, Hil]Qp, (24)
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We can calculate the mean and covariance¥ofby calculating the Thus, in this case, we apply tHeB Kalman (11)—(17) to the state-
first two moments of its individual elemengg;(1) [ =1,---N ®. space model
Now to calculate the two moments &f; (1), we need to evaluate the

pdf £(X:(D)|Yi(1), Hi(1)). Applying Bayes rule yields 7hi+1 = Fh;+Gu, o @7)
Y E[X] } { N }
X, Vil H = S h; 28
FEROP@. ) = TSR Lova | = Lo |2 [0 ] @
_ F (X5, Vil Hq) The two moments ofX; can be obtained from (25)—(26) but the
COSAM R X H) calculations become more cumbersome due to the presence of the
e 7 CP (see [30]).
R (see 30D
S, FQl X, M) £ (X H)
[y, — ;|2 B. Using the hard estimate of the input
e
- ¢ . We can simplify our algorithm by using the hard estimate of the
M 7% input. In this case, the pilot based estimate remains the same. In
Zj:l € " the expectation step, however, we only calculate the first moment

where we dropped the dependenceldior notational convenience of the input X; and round the estimate to the near€tM point,

and where, in the deriving thedf above, we used the factthat(l)is X ;. The channel estimate is subsequently obtained by applying the
drawn from the alphabet = {4,..., Ay} with equal probability. FB-Kalman (11)—(17) to the state-space model

We can use this to show that

0wy hiy = Fhit Gy, (29)

YL Age 7 Y = X +N, (30)
EIX(D)Yi(D), Hi ()] = = s (29
]\/[ B U‘VL . .
ZJ’=1 € ) C. Kalman- (forward-only) based estimation
1Ys (D=H @) A
SM 4% oz The FB Kalman requires considerable storage and latency. The
E[lX: )P |V:i(1), Hi(1)] = == EAGEETIYWE (26) algorithm needs to wait for all’ + 1 symbols before it can execute
EM1 e 2 : the backward run and hence obtain the channel estimate. One way
j=

] ) ) around this is to reduce the window siZé Alternatively, we can
Equations (23)—(24) represents the soft estimate of the input. We ¢gR the filter in the forward direction only (i.e., run (11)—(15)) for
perform channel estimation using the hard estimate of the input. Thisih, the initial estimation and tHEM iteration”.The algorithm then
is obtained by rounding the first moment in (25)—(26 to the nearggjjlapses to the Kalman-based filter proposed in [32] where the data
QAM point. and channel are recovered within o@FDM symbol, i.e. with no

latency.

E. Summary of th&M-basedFB Kalman

1) Obtain the initial channel estimatel ” by applying theFB V. SIMULATIONS

Kalman (11)—(17) to the state-space model (21)~(22) We consider anOFDM system that transmits a sequence of 5
2) Iterate between the expectation and maximization steps for symbols, each with 64 carriers and a cyclic prefix of lenfth= 15.
1,..., Niger : The input data is 1AM mapped from a binary bit stream through

a) Expectation: Compute the first two moments of theGray coding. We use 16 pilots in the first symbol and fix the number
input X¢ given the channel outp@v? and the previous of pilots in the subsequent symbols towhere4 < x < 16.
estimate of the channgg“_l’ using (25)—(26). The channellR consists of 16 complex taps (the maximum
b) Maximization: Obtain the channel estima@gm by length possible). The initialR k, has an exponential delay profile
applying the FB Kalman (11)—(17) to the state-spaceEllho(k)[’] = e™%?*. Fori > 0, h, is generated according to the
model (19)—(20). dynamical modeh,,, = Fh; + Gu, where F andG are diagonal
&qtrices. Specifically, we sdf = fI with f =.7,.8, or .9 and set
the diagonal entries o asG (k, k) = /(1 — f2)E[|h,(k)[?]. The
state noisay, is iid with unit variance. This choice of parameters en-
sures that the channel maintains the same delay profile at subsequent
time instants. Throughout the simulations, we run Ei algorithm
IV. THREE EXTENSIONS for 4 iterations.

The algorithm can be stopped when the difference between two ¢
secutive estimategh? "’ — A7V " |12 is below a certain threshold

or when the maximum number of iterationg:.. is reached.

A. Using the cyclic prefix observation

The FB Kalman can make use of tHeP observation. Here pilot- A. Comparing the Kalman and the forward-backward Kalman
based estimation remains the same whileEM algorithm is run on In Figure 1, we compare the performanceFd-Kalman and the
the I/O equation (5) which contains the effect of the cyclic prefixkaiman based receivers. We carry out this comparison for two levels

of time variation = .7,.9), progressively increasing the number
6To be precise, calculating the second moment (24) also calls for calculat'@g pilots fromz = 4 to = = 16. As expected, theFB-Kalman

the cross correlation8[X; (1) X; (m)] forl,m = 1,2,--- , N as the elements istentl toerf the Kal filter-based .
of X; are not independent givery; and #,. Calculating these cross CONSISENtly outperiorms the Kalman hiter-based receiver.

moments however is computationally complex and not inline withQR®M

philosophy which achieves equalization on an element by element basis. AdThe Kalman-based algorithm is thus the same algorithm summarized in
such, in calculatingCov[X}|Y;, H,], we will assume the elements &;  Subsection IlI-E. The only difference is that equations (11)—(17) are replaced
are iid given#; andy;. by the subset of equations (11)—(15).
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(a) 4 Pilots (b) 8 Pilots

) (a) 4 Pilots o (b) 8 Pilots . Kalman 1072 T Hard data
— FB Kalman 107 o \" += Soft data
i . — Soft with CP
14
10
a® 107 a® 107 a” 10 a®
107"° 107®
107 10°
5 10 15 20 5 10 15 20 5 20 5
(c) 12 Pilots (d) 16 Pilots o (c) 12 Pilots B (d) 16 Pilots
10" 107 10 10
a® 107 a® 107 2® 107 2® 102
10° 10° -3 3
10 10
5 10 5 20 5 10 15 20 5 10 15 20 5 10 15 20
E/N, Ey/N, E/N, EJN,

Fig. 1. The FB-Kalman (solid lines) outperforms the Kalman (dottedrig 2. The FB Kalman-based receiver demonstrates improB&R with
lines) for two levels of time variation (the top curves corresponfi$e.7  jncreasing levels of signal processing € .7)

and the lower tof = .9) (@) 4 Pilots

L (b) 8 Pilots
3 10 +++ Hard data
102 o ) -— Soft data
. — Soft with CP
B. Effect of increased signal processing 107 ]
We next consider the effect of increased signal processing 5 =
the BER curves for FB-Kalman based receiver. Specifically, we
implement this receiver 1) using th@P observation and the soft 107
estimate of the input, 2) using theP and the hard estimate of the 5 107, 0 s 20
input, and 3) using n&P observation and using the hard estimat
of the input. We demonstrate that fgr= .7 (Figure 2) andf = .8 o (©) 12 Pilots 0t (d) 16 Pilots
(Figure 3). The two figures show that increasing the level of sign
processing pays off producing betBER performance for different
number of pilots. However, as we increase the number of pilots sigr .
processing results in diminishing returns. o 10 o 10
C. Effect of increasing the number of iterations . .
10 10
Figure 4 demonstrates the effect of increasing the numb&nobf ° N 20 s oo ® 20

b o b o

iterations on theBER performance of thé-B-Kalman receiver. We

demonstrate that fof = .9 and for different number of pilots. As Fig. 3. For f = .8, we observe a similar behavior for th& Kalman as
expected, th8ER improves as we increase the number of iterationgor f = .7. For both cases, however, signal processing yields diminishing
Notice, however, that with increasing number of pilots RER returns with increasing number of pilots.

curves for 2 and 4 iterations become almost identical demonstrating

again the tradeoff between increasing the number of pilots and . ) ) . .
increased signal processing. of pilots. We test these receivers against the dynamically variant

channel (1) withf = .7. Figure 5 demonstrates that the Kalman and
the FB-Kalman receivers outperform theS receiver and the receiver

D. Bench marking of [24]. This is especially the case for small number of pilots.
Finally, we bench mark th8ER performance of the Kalman
and FB-Kalman receivers against receivers that have been suggested VI. CONCLUSION

in literature and also against the known-channel case. Specificallyln this paper, we considered the problem of semi-blind channel
Figure 5 compares th8ER performance of the following five and data recovery i®FDM transmission over time-variant channels.
receivers: 1) EM-based least-squaréS) receiver (i.e. a receiver Motivated by theEM approach, the algorithm boils down toFRB
employing frequency correlation only), 2) tieM-based receiver Kalman filter. It makes a collective use of the channel and data
proposed by Lu, Wang, and Li in [24] 3) the EM-based Kalman constraints in Table I. Specifically, the algorithm makes use of the
receiver 4) the EM-based FB-Kalman receiver, and 4) a receiver wiihite alphabet constraints (in (25)—(26)), the data in its soft form
perfect channel knowledge. All receivers implement the same numigigr (19)—(20)), pilots (in (21)—(22)), transmission precoding (in (27)—
(28)), finite-delay spread (in that channel estimation is done in the
8This algorithm is similar to our (forward-only) Kalman-based algorithmjme domain), and frequency- and time-correlation (in (1)). It is

in that it makes use of time and frequency correlation. The two algorith . -
are still different in that in applying th&M algorithm, this paper assumesngaso straightforward to incorporate the effect of an outer code and

that the data is the missing information while [24] assumes the channel to®esparsity (see [30]). We also suggested a relaxed version of the
the missing information. algorithm (a forward-only Kalman) that is able to perform recovery
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(a) 4 Pilots

(b) 8 Pilots

© liter.
(= 2iter.

estimated (e.g., see [34] and [35]) and from the transmit filter. The
channelh; is the convolution of the physical channe] (which
consists ofL 4+ 1 paths arriving at instantsy, 71 ..., 7.) and the
receive filterr. Thus, we can write [15]

D-w 1.4 D-w 107
10 h, = Ric, (31)
" where R; is the receive filter matrix given by
10 3
5 10y 10 15 20 r(—70) r(—71) r(—7L)
(T — 7o) (T — 1) r(T — 1)
L (c) 12 Pilots o (d) 16 Pilots Rz —
10 10
T(PT*T()) T(PT*TQ) T(PT*TL)
- o 1 Due to the mobile nature of the channel, the physical chan-
* * nel taps c;(k) are time-variant. According to theWSSUS
model, the process,; (k) is zero-mean wide-sense stationary com-
plex Gaussian process with autocorrelatidn[c,(k)c, (k')] =
07 m = - 07 m = 2w Jo(akli —i'|) dppr Where a, = 21 fe(k)(N + P)T, T is the

E/N

o

E N,

sampling (baud) ratef.(k) is the Doppler frequency associated
with the kth tap, andJ, denotes the zero-order Bessel function

Fig. 4. Increasing the number of EM iterations improves BER of the of the first kind. We can approximate the time-variant behav-
FB-Kalman receiver, but the value of these iterations results in diminishidos the tap c,(k) by a first-order AR model (see [21], [22])

returns
(a) 6 pilots

10°

5 10 15 20 25

(c) 12 pilots

10°

(b) 8 pilots

5 10 15 20 25

(d) 16 pilot:

- LS
Lu-Wang-Li
— Kalman

= — - FB Kalman

— Known ch.

i1 (k) = Jo (ar) ¢i(k) + /(1 — T5(ar)) Ellcy (k)[*Jui (k). The
factor /(1 — JZ (o)) E[|c, (k)|?] ensures that the tag (k) main-
tains the same power profile for all time. Collecting this recursion
for all taps yields

€1 — Fch + Gcﬂi (32)

where

Fc:diag( Jo(a1), -+, Jolar+t1) )

and

G. = diag ( /0 - 7@ Ble;MIZ, ... /O = T (ap 1)) Elle; (L + DI2] )

We can use this dynamical relationship along with (31) to derive
a dynamical relationship for the impulse resporseSpecifically,

multiplying both sides of (32) byR and noting thatR' R = I °, we
obtainh,,, = Fh;+Gu,, whereF = RF.R' and G = RG..
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