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An EM-Based Forward-Backward Kalman Filter for the
Estimation of Time-Variant Channels in OFDM

Tareq Y. Al-Naffouri

Abstract— OFDM modulation combines the advantages of high achiev-
able rates and relatively easy implementation. However, for proper
recovery of the input, the OFDM receiver needs accurate channel
information. In this paper, we propose an expectation-maximization (EM)
algorithm for joint channel and data recovery in fast fading environments.
The algorithm makes acollectiveuse of the data and channel constraints
inherent in the communication problem. This comes in contrast to
other works which have employed these constraints selectively. The
data constraints include pilots, the cyclic prefix, and the finite alphabet
restriction, while the channel constraints include sparsity, finite delay
spread, and the statistical properties of the channel (frequency and
time correlation). The algorithm boils down to a forward-backward (FB)
Kalman filter. We also suggest a suboptimal modification that is able to
track the channel and recover the data with no latency. Simulations show
the favorable behavior of both algorithms compared to other channel
estimation techniques.

Index Terms— OFDM, time-variant channels, channel modelling, fre-
quency correlation, time correlation, channel estimation, Kalman filters,
expectation-maximization algorithm.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an effec-
tive technique for high bit-rate transmission. It has found widespread
applications and is already part of many standards (e.g. 802.11a/b/g
and 802.11a/e).OFDM combats intersymbol interference by prepend-
ing a guard band (cyclic prefix) to the transmitted symbol. This
effectively divides the channel into many narrowbandISI-free chan-
nels over which parallel streams of data are transmitted. Frequency
selectivity can now be mitigated using one tap equalizers. For proper
operation of anOFDM receiver, it needs an accurate estimate of the
channel state. For rapidly time-variant channels, the receiver faces
the additional challenge of performing channel (and data) recovery
for eachOFDM symbol. In carrying out these two operations, the
receiver takes advantage of the rich structure of the underlying
communication problem. This structure can be traced back to some
inherent constraints on the data or on the channel. Table I lists
the most common of these constraints and some of the works that
employed them.

A. Approaches to channel estimation inOFDM

Several algorithms have been suggested in literature for channel
estimation inOFDM transmission. Each of these algorithms makes
use of a subset of the constraints in Table I. These algorithms can be
classified into one of the following categories
1) Training-based estimation: Pilots are used to perform channel
estimation as in [11] and [14].
2) Blind estimation: At the other extreme, blind algorithms rely
completely on natural constraints inherent in the communication
problem to perform channel recovery. For example, [3] used fre-
quency correlation and code, [5] used the cyclostationarity induced
by the cyclic prefix and transmitter precoding, [26] used a subspace
constraint, and [6] used the cyclic prefix.

Manuscript received January 20, 2002; revised November 18, 2002.
T. Y. Al-Naffouri is with the Electrical Engineering Department, King Fahd

University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. E-mail:
naffouri@kfupm.edu.sa.

3) Semi-blind estimation: Semi-blind techniques are a hybrid of
blind and training based techniques, utilizing pilots and other natural
constraints to perform channel estimation (see for example [3],
[19],[21], [22], [24], [27]).
4) Data-aided channel estimation:The main and perhaps the only
reason to perform channel estimation at the receiver is to use the
estimate along with the channel output to recover the transmitted
data. One can, in turn, use the detected data to enhance the channel
estimate giving rise to an iterative technique for channel and data
recovery. With this in mind, it is natural for the two operations
of channel and data recovery to be considered jointly, especially
since one operation can be used to enhance the performance of the
other. This intuitive idea is the basis of joint channel estimation
and data detection proposed in [21], [22], [28]. Other works, like
[24], [29], and [2], arrived at iterative techniques more rigorously
by employing the expectation-maximization (EM) algorithm. The
data-aided approach seems the most sensible for channel estimation,
especially when the channel is time variant.1

The aforementioned works utilizeonly a subsetof the constraints
on the channel and data. In this paper, however, we present a (data-
aidedEM) method that can make use of all the constraints in Table I2.
The method boils down to a forward-backward (FB) Kalman filter
which we derive in Section III. One consequence of our approach is
the increased storage and latency requirements of theFB-Kalman as
it has to process multipleOFDM symbols simultaneously. We thus
suggest in Section IV a suboptimal forward-only version (basically
a Kalman filter) that is able to perform channel recovery with no
latency. These two algorithms are compared and benchmarked in our
simulations in Section V. We start by introducing our notation and
the system model.

B. Notation

We denote scalars with small-case letters, vectors with small-case
boldface letters, and matrices with uppercase boldface letters. We
also reserve calligraphic notation (e.g.,X andX ) for variables in
the frequency domain. The individual entries of a variable likeh are
denoted byh(l). When any of these variables becomes a function
of time, the time indexi appears as a subscript (e.g., we writexi,
hi(l), hi, andX i ), and use the notationhT

0 to denote the sequence
(h0,h1, · · · ,hT ).

We also maintain the following conventions: 1) a hat over a variable
indicates an estimate of the variable (e.g.,ĥ is an estimate ofh), 2)
all vectors are column vectors, 3) all underlined vectors are of length
P (e.g., the cyclic prefixxi) or of lengthP + 1 (e.g., the impulse
responsehi), 4) all vectors with no bars are of lengthN (e.g.,X i),
and 5) all overlined vectors are of lengthN + P (e.g.,xi).

II. SYSTEM MODEL

Consider theiid sequenceX (T+1)N
0 = (X1,X2, · · · ,X(T+1)N ) to

be transmited. In anOFDM system, the sequence is parsed into a
sequence ofT +1 data symbolsX T

0 = (X 0,X 1, · · · ,X T ) each of
lengthN. Each symbolX i undergoes anIDFT operation to produce
the time domain symbolxi =

√
NQ∗X i, whereQ is the N × N

DFT matrix for whichql,m = e−j
2π(l−1)(m−1)

N . The transmitter then

1When the channel is time invariant, a data aided approach helps reduce
the number of pilots needed for channel estimation.

2Due to space limitation, we do not elaborate on how the algorithm makes
use of the code and sparsity. However, the algorithm can incorporate these
constraints in a straightforward manner [30].
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TABLE I
Data and channel constraints used for channel estimation

CONSTRAINTS ASSUMPTIONS REFERENCE

Finite alphabet constraint [1], [2]
Code [3], [4]

Transmit precoding
(e.g., cyclic prefix,silent guard band)

[5], [6], [7], [8], [9], [3]
Data

Constraints

Pilots [10], [11], [12],[13],[14]
Finite delay spread [5], [3], [11]

Sparsity [15], [16], [17]
Frequency correlation [18],[19], [3]

Time correlation [20], [21], [22], [23], [24]

Channel
Constraints

Uncertainty information [25], [18]

appends a cyclic prefix (CP) xi (of lengthP ) to xi, resulting finally
in a sequence of super-symbolsxT

0 each of lengthN + P.

We assume that the channelhi (of maximum lengthP + 1)
remains fixed over a givenOFDM symbol (and its associatedCP)
but varies from one symbol to the next according to a state-space
model

hi+1 = Fhi +Gui, h0 ∼ N (0,Π0), ui ∼ N (0, σ2
uI) (1)

The matricesF andG in (1) are square matrices of sizeP + 1
and are assumed available to the receiver. In the Appendix, we
show how we can construct such a model from the knowledge of
the Doppler frequency (time-correlation), the power-delay profile
(frequency-correlation), and the receive filter. At the channel output,
we obtain a sequence of time-domain super-symbolsyT

0 , which after
stripping the cyclic prefixy

i
, produce a sequence of time-domain

symbolsyT
0 . The input/output (I/O) relationship of theOFDM system

is best described in the frequency domain

Yi = diag(X i)Hi +N i = diag(X i)QP+1hi +N i (2)

whereN i ∼ N (0, σ2
nI) is the additive noise. The second equality in

(2) follows from theDFT relationshipHi
∆
= Q

�
hi

0

�
= QP+1hi,

whereQP+1 consists of the firstP +1 columns ofQ. Alternatively,

with Xi
∆
= diag(X i)QP+1, we can write

Yi = Xihi +N i (3)

A similar relationship exists between the cyclic prefixes at the input
and the output

y
i
= Xihi + ni (4)

whereXi is a P × (P + 1) Toeplitz matrix constructed from the
vector of cyclic prefixes[xT

i−1,x
T
i ]T . By concatenating (3) and (4),

we obtain the total input/output relationship

Yi = Xihi +N i (5)

which incorporates the effect of theOFDM symbol as well as the
cyclic prefix observation.

A. Pilot/output relationships

In general, the receiver needs pilots to obtain initial channel
estimates. Let the index setIp = {i1, i2, . . . , iLp} denote the pilot
locations within theOFDM symbol. Also, letXIp denote the matrix
X pruned of the rows that do not belong toIp. Then, the pilot/output
equation can be derived from theI/O relationship (3) as

YiIp = XiIphi +N iIp (6)

III. T HE EM ALGORITHM FOR JOINT CHANNEL AND DATA

ESTIMATION

A. The EM algorithm

Ideally, we estimatehi using someI/O relationship, e.g. (3), by
maximizing the corresponding log-likelihood function

ĥ
MAP

i = arg max
hi

{ln p(Yi|Xi,hi) + ln p(hi)}

For example, when the channel obeys theI/O relationship (3) (so
that ln p(Yi|Xi,hi) = −‖Yi − Xihi‖2σ−2

n
up to some additive

constant) andhi is N (0,Π), (so thatln p(hi) = −‖hi‖2Π−1 up to
some additive constant), in this case, theMAP estimate is given by3

ĥ
MAP

i = arg min
hi

n
‖Yi −Xihi‖2σ−2

n
+ ‖hi‖2Π−1

o
In our case, however, the inputX i (or Xi

4) is not observable.
Thus, we use the expectation-maximization algorithm and maximize
instead an averaged form of the log-likelihood function. Specifically,

starting from an initial estimatêh
(0)

i , the estimatêhi is calculated
iteratively, with the estimate at thej-th iteration given by

ĥ
(j)

i = arg max
hi

n
E

Xi|Yi,ĥ
(j−1)
i

ln p(Yi|Xi,hi) + ln p(hi)
o

Thus, for the example above, theEM-based estimate (at thej-th
iteration) is given by5

ĥ
(j)

i = arg min
hi

n
‖Yi − E[Xi]hi‖2σ−2

n
+ ‖hi‖2Cov[X∗i ] + ‖hi‖2Π−1

o
where the two moments ofXi are taken given the outputYi and

the most recent channel estimateĥ
(j−1)

i . We now derive theEM
algorithm for the time-variant case.

B. TheEM-based forward-backward Kalman

Consider theOFDM system of section 2, essentially described by
the state-space model

hi+1 = Fhi +Gui (7)

Yi = Xihi +N i (8)

with h0 ∼ N (0,Π0) andui ∼ N (0, σ2
uI). Given a sequence ofT+

1 input and output symbolsXT
0 andYT

0 , we obtain theMAP estimate
of the channel sequencehT

0 by maximizing the log-likelihood

L = ln p(YT
0 |XT

0 ,hT
0 ) + ln p(hT

0 )

3We use the weighted norm‖h‖2Σ to denoteh∗Σh.
4SinceXi = diag(X i)QP+1, conditioning onX i can be replaced by

conditioning onXi.
5The CovarianceCov[X∗

i ] is defined asCov[X∗
i ] = E[X∗

iXi] −
E[X∗

i ]E[Xi].



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 1, NO. 11, NOVEMBER 2006 3

Now, using (8), we can express the first term of the log-likelihood
(up to some additive constant) as

ln p(YT
0 |X T

0 ,hT
0 ) =

TX
i=0

ln p(Yi|X i,hi)

= −
TX

i=0

‖Yi −Xihi‖21
σ2

n

Similarly, using (7), we can express the second term (again up to
some additive constant) as

ln p(hT
0 ) =

TX
i=1

ln p(hi|hi−1) + ln p(h0)

= −
TX

k=1

‖hk − Fhk−1‖21
σ2

u
GG∗ − ‖h0‖2Π−1

0
(9)

Combining these two expressions yields

L = −
TX

i=0

‖Yi −Xihi‖21
σ2

n

− ‖h0‖2Π−1
0
−

TX
i=1

‖hi − Fhi−1‖21
σ2

u
GG∗ (10)

Since the channel sequencehT
0 is jointly Gaussian, theMAP

estimate of the channel sequence given the input and output sequences
XT

0 and YT
0 is the same as theMMSE estimate given the same

sequences. TheMMSE estimate itself is obtained by theFB Kalman
filter. This allows us to state the following theorem (for a proof, see
problem 10.9 in [31]).

Theorem 1:Channel estimation–Known input caseConsider the
state-space model (7)–(8). Given the input and output sequences
XT

0 and YT
0 , the MAP (or equivalentlyMMSE) estimate ofhT

0

is obtained by applying the following (forward-backward Kalman)
filter to the state-space model (7)–(8)
Forward run: Starting from the initial conditionsP 0|−1 = Π0 and
h0|−1 = 0 and for i = 1, . . . , T, calculate

Re,i = σ2
nIN+P +XiP i|i−1X∗

i (11)

Kf,i = P i|i−1X∗
iR

−1
e,i (12)

ĥi|i = (IN+P −Kf,iXi) ĥi|i−1 +Kf,iYi, (13)

ĥi+1|i = F ĥi|i (14)

P i+1|i = F i

�
P i|i−1 −Kf,iRe,iK∗

f,i

�
F ∗+ 1

σ2
n

GG∗ (15)

Backward run: Starting from�T+1|T = 0 and for i = T, T −
1, . . . , 0, calculate

�i|T =
�
IP+N −X∗

iK
∗
f,i

�
F ∗i�i+1|T +

XiR−1
e,i

�
Yi −Xiĥi|i−1

�
(16)

ĥi|T = ĥi|i−1 + P i|i−1�i|T (17)

The desired estimate iŝhi|T .

TheFB Kalman obtains theMAP estimate of the channel impulse
response. In the forward step, the filer obtains theMAP estimate of
hi givenXi

0. Our aim, however, is to obtain theMAP estimate of
hi given the whole sequenceXT

0 . The backward step obtains the
contribution ofXT

i+1 to theMAP estimate ofhi.

Theorem 1 allows us to obtain the estimate ofhT
0 when the input

sequenceXT
0 is not observable with the help of the expectation

maximization (EM) algorithm. Specifically, in theEM algorithm, we
maximize the log-likelihood (10)averagedover the sequenceXT

0 .
Thus, thej-th iteration of theEM algorithm is now obtained by

maximizing the averaged log-likelihood functionL = EXT
0 |hT

0 ,YT
0
L.

By inspecting (10), we note that the only term that is modified under
expectation is the first summand, and its expectation is given by

E ‖Yi −Xihi‖21
σ2

n

= ‖Yi − E [Xi]hi‖21
σ2

n

+ ‖hi‖21
σ2

n
Cov[X∗i ]

=

� Yi

0P×1

�
−
�

E[Xi]

Cov[X∗
i ]

1/2

�
hi

2

1
σ2

n

where the expectations are taken given the most recent estimate

ĥ
(j−1)

0 and the output symbolsYT
0 . We thus have

L = −
TX

i=0

� Yi

0P×1

�
−
�

E[Xi]

Cov[X∗
i ]

1/2

�
hi

2

1
σ2

n

−

TX
i=1

‖hi − Fhi−1‖21
σ2

u
GG∗ − ‖h0‖2Π−1

0
(18)

Note that we can obtain the averaged likelihood (18) from the original
likelihood (10) by performing the substitution

Xi −→
�

E[Xi]

Cov[X∗
i ]

1/2

�
Yi −→

� Yi

0P×1

�
We can thus state the following theorem.

Theorem 2:Channel estimation–Unknown input caseConsider
the state-space model (7)–(8) and assume that the receiver does not
have access to the transmitted dataXT

0 . The channel estimate at the
j-th iterationhT

0

(j)
of the EM algorithm is obtained by applying

the forward-backward Kalman (11)–(17) to the following state-space
model

hi+1 = Fhi +Gui (19)� Yi

0P×1

�
=

�
E[Xi]

Cov[X∗
i ]

1/2

�
hi +

� N i

ni

�
(20)

whereni ∼ N (0P×1, σ
2
nI) is virtual noise that is independent of

the physical noiseN i.

To fully implement theEM algorithm, we need to initialize the
algorithm and calculate the first and second moments of the input–
two steps which we perform next.

C. Initial channel estimation

We can obtain the initial channel estimate from the pilot/output
equation (6). We do this by applying theFB Kalman to the state-
space model

hi+1 = Fhi +Gui (21)

YiIp = XiIphi +N iIp (22)

i.e., by applying theFB Kalman (11)–(17) with the substitutions
Xi −→XiIp and Yi −→ YiIp

D. Calculating the input moments

Using the relationshipXi = diag(X i)QP+1, we can write

E[Xi|Yi,Hi] = diag(E[X i|Yi,Hi])QP+1 (23)

Cov[X∗
i |Yi,Hi] = Q∗P+1Cov[X ∗i |Yi,Hi]QP+1 (24)
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We can calculate the mean and covariance ofX i by calculating the
first two moments of its individual elementsXi(l) l = 1, · · ·N 6.
Now to calculate the two moments ofXi(l), we need to evaluate the
pdf f(Xi(l)|Yi(l),Hi(l)). Applying Bayes rule yields

f(Xi(l)|Yi(l),Hi(l)) =
f(Xi,Yi|Hi)

f(Yi|Hi)

=
f(Xi,Yi|Hi)PAM

Xi=A1
f(Yi,Xi|Hi)

=
f(Yi|Xi,Hi)f(Xi|Hi)PAM

Xi=A1
f(Yi|Xi,Hi)f(Xi|Hi)

=
e
− |Yi−HXi|2

σ2
nPM

j=1 e
− |Yi−HAj |2

σ2
n

where we dropped the dependence onl for notational convenience
and where, in the deriving thepdf above, we used the fact thatXi(l) is
drawn from the alphabetA = {A1, . . . , AM} with equal probability.
We can use this to show that

E[Xi(l)|Yi(l),Hi(l)] =

PM
j=1 Aje

− |Yi(l)−H(l)Aj |2
σ2

nPM
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(25)

E[|Xi(l)|2|Yi(l),Hi(l)] =

PM
j=1 |Aj |2e−

|Yi(l)−H(l)Aj |2
σ2

nPM
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(26)

Equations (23)–(24) represents the soft estimate of the input. We can
perform channel estimation using the hard estimate of the input. This
is obtained by rounding the first moment in (25)–(26 to the nearest
QAM point.

E. Summary of theEM-basedFB Kalman

1) Obtain the initial channel estimatehT
0

(0)
by applying theFB

Kalman (11)–(17) to the state-space model (21)–(22)
2) Iterate between the expectation and maximization steps forj =

1, . . . , Niter :

a) Expectation: Compute the first two moments of the
inputXT

0 given the channel outputYT
0 and the previous

estimate of the channelhT
0

(j−1)
using (25)–(26).

b) Maximization: Obtain the channel estimatehT
0

(j)
by

applying the FB Kalman (11)–(17) to the state-space
model (19)–(20).

The algorithm can be stopped when the difference between two con-
secutive estimates‖hT

0

(j) − hT
0

(j−1)‖2 is below a certain threshold
or when the maximum number of iterationsNiter is reached.

IV. T HREE EXTENSIONS

A. Using the cyclic prefix observation

The FB Kalman can make use of theCP observation. Here pilot-
based estimation remains the same while theEM algorithm is run on
the I/O equation (5) which contains the effect of the cyclic prefix.

6To be precise, calculating the second moment (24) also calls for calculating
the cross correlationsE[Xi(l)Xi(m)] for l, m = 1, 2, · · · , N as the elements
of X i are not independent givenYi and Hi. Calculating these cross
moments however is computationally complex and not inline with theOFDM
philosophy which achieves equalization on an element by element basis. As
such, in calculatingCov[X ∗i |Yi,Hi], we will assume the elements ofX i

are iid givenHi andYi.

Thus, in this case, we apply theFB Kalman (11)–(17) to the state-
space model

hi+1 = Fhi +Gui (27)� Yi

0P×1

�
=

�
E[Xi]

Cov[X∗
i ]

1/2

�
hi +

� N i

ni

�
(28)

The two moments ofXi can be obtained from (25)–(26) but the
calculations become more cumbersome due to the presence of the
CP (see [30]).

B. Using the hard estimate of the input

We can simplify our algorithm by using the hard estimate of the
input. In this case, the pilot based estimate remains the same. In
the expectation step, however, we only calculate the first moment
of the inputXi and round the estimate to the nearestQAM point,
X̂i. The channel estimate is subsequently obtained by applying the
FB-Kalman (11)–(17) to the state-space model

hi+1 = Fhi +Gui (29)

Yi = X̂ihi +N i (30)

C. Kalman- (forward-only) based estimation

The FB Kalman requires considerable storage and latency. The
algorithm needs to wait for allT + 1 symbols before it can execute
the backward run and hence obtain the channel estimate. One way
around this is to reduce the window sizeT. Alternatively, we can
run the filter in the forward direction only (i.e., run (11)–(15)) for
both the initial estimation and theEM iteration7.The algorithm then
collapses to the Kalman-based filter proposed in [32] where the data
and channel are recovered within oneOFDM symbol, i.e. with no
latency.

V. SIMULATIONS

We consider anOFDM system that transmits a sequence of 5
symbols, each with 64 carriers and a cyclic prefix of lengthP = 15.
The input data is 16QAM mapped from a binary bit stream through
Gray coding. We use 16 pilots in the first symbol and fix the number
of pilots in the subsequent symbols tox where4 ≤ x ≤ 16.

The channelIR consists of 16 complex taps (the maximum
length possible). The initialIR h0 has an exponential delay profile
E[|h0(k)|2] = e−0.2k. For i > 0, hi is generated according to the
dynamical modelhi+1 = Fhi +Gui whereF andG are diagonal
matrices. Specifically, we setF = fI with f = .7, .8, or .9 and set
the diagonal entries ofG asG(k, k) =

p
(1− f2)E[|h0(k)|2]. The

state noiseui is iid with unit variance. This choice of parameters en-
sures that the channel maintains the same delay profile at subsequent
time instants. Throughout the simulations, we run theEM algorithm
for 4 iterations.

A. Comparing the Kalman and the forward-backward Kalman

In Figure 1, we compare the performance ofFB-Kalman and the
Kalman based receivers. We carry out this comparison for two levels
of time variation (f = .7, .9), progressively increasing the number
of pilots from x = 4 to x = 16. As expected, theFB-Kalman
consistently outperforms the Kalman filter-based receiver.

7The Kalman-based algorithm is thus the same algorithm summarized in
Subsection III-E. The only difference is that equations (11)–(17) are replaced
by the subset of equations (11)–(15).
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Fig. 1. The FB-Kalman (solid lines) outperforms the Kalman (dotted
lines) for two levels of time variation (the top curves correspond tof = .7
and the lower tof = .9)

B. Effect of increased signal processing

We next consider the effect of increased signal processing on
the BER curves for FB-Kalman based receiver. Specifically, we
implement this receiver 1) using theCP observation and the soft
estimate of the input, 2) using theCP and the hard estimate of the
input, and 3) using noCP observation and using the hard estimate
of the input. We demonstrate that forf = .7 (Figure 2) andf = .8
(Figure 3). The two figures show that increasing the level of signal
processing pays off producing betterBER performance for different
number of pilots. However, as we increase the number of pilots signal
processing results in diminishing returns.

C. Effect of increasing the number of iterations

Figure 4 demonstrates the effect of increasing the number ofEM
iterations on theBER performance of theFB-Kalman receiver. We
demonstrate that forf = .9 and for different number of pilots. As
expected, theBER improves as we increase the number of iterations.
Notice, however, that with increasing number of pilots theBER
curves for 2 and 4 iterations become almost identical demonstrating
again the tradeoff between increasing the number of pilots and
increased signal processing.

D. Bench marking

Finally, we bench mark theBER performance of the Kalman
and FB-Kalman receivers against receivers that have been suggested
in literature and also against the known-channel case. Specifically,
Figure 5 compares theBER performance of the following five
receivers: 1) EM-based least-squares (LS) receiver (i.e. a receiver
employing frequency correlation only), 2) theEM-based receiver
proposed by Lu, Wang, and Li in [24]8, 3) the EM-based Kalman
receiver 4) the EM-based FB-Kalman receiver, and 4) a receiver with
perfect channel knowledge. All receivers implement the same number

8This algorithm is similar to our (forward-only) Kalman-based algorithm
in that it makes use of time and frequency correlation. The two algorithms
are still different in that in applying theEM algorithm, this paper assumes
that the data is the missing information while [24] assumes the channel to be
the missing information.
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Fig. 2. The FB Kalman-based receiver demonstrates improvedBER with
increasing levels of signal processing (f = .7)
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Fig. 3. For f = .8, we observe a similar behavior for theFB Kalman as
for f = .7. For both cases, however, signal processing yields diminishing
returns with increasing number of pilots.

of pilots. We test these receivers against the dynamically variant
channel (1) withf = .7. Figure 5 demonstrates that the Kalman and
theFB-Kalman receivers outperform theLS receiver and the receiver
of [24]. This is especially the case for small number of pilots.

VI. CONCLUSION

In this paper, we considered the problem of semi-blind channel
and data recovery inOFDM transmission over time-variant channels.
Motivated by theEM approach, the algorithm boils down to aFB
Kalman filter. It makes a collective use of the channel and data
constraints in Table I. Specifically, the algorithm makes use of the
finite alphabet constraints (in (25)–(26)), the data in its soft form
(in (19)–(20)), pilots (in (21)–(22)), transmission precoding (in (27)–
(28)), finite-delay spread (in that channel estimation is done in the
time domain), and frequency- and time-correlation (in (1)). It is
also straightforward to incorporate the effect of an outer code and
of sparsity (see [30]). We also suggested a relaxed version of the
algorithm (a forward-only Kalman) that is able to perform recovery
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Fig. 4. Increasing the number of EM iterations improves theBER of the
FB-Kalman receiver, but the value of these iterations results in diminishing
returns
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Fig. 5. BER curves comparing a receiver that employs the Kalman filter
with one employing the FB-Kalman and another with perfect channel
knowledge. The two Kalman receivers employ the same number of pilots
with optimum placement.

with no latency and hence avoid the delay and storage shortcomings
of theFB-Kalman. Our simulation show the favorable behavior of the
FB-Kalman filter. Specifically, simulations demonstrate that increased
signal processing always results in betterBER behavior.

The Kalman receivers derived here apply to nonstationary channels
as well in which the matricesF andG of the state-space model
(1) vary with time. The algorithm has already been extended to
incorporate the coding constraint on the data [33]. The paper assumes
that these parameters are known perfectly at the receiver. However,
the receiver can be generalized to estimate the state-space parameters
and to be robust to uncertainties in these estimates (e.g., see [25]).

APPENDIX I
CHANNEL MODEL

Here, we show how to derive the state-space model (1) from the
power delay profile and the Doppler spread (both of which can be

estimated (e.g., see [34] and [35]) and from the transmit filter. The
channelhi is the convolution of the physical channelci (which
consists ofL + 1 paths arriving at instantsτ0, τ1 . . . , τL) and the
receive filterr. Thus, we can write [15]

hi = Rici (31)

whereRi is the receive filter matrix given by

Ri =

26664
r(−τ0) r(−τ1) · · · r(−τL)
r(T − τ0) r(T − τ1) · · · r(T − τL)
...

...
...

...
r(PT − τ0) r(PT − τ2) · · · r(PT − τL)

37775
Due to the mobile nature of the channel, the physical chan-
nel taps ci(k) are time-variant. According to theWSSUS
model, the processci(k) is zero-mean wide-sense stationary com-
plex Gaussian process with autocorrelationE [ci(k)ci′(k

′)] =
J0 (αk|i− i′|) δkk′ where αk = 2πfc(k)(N + P )T, T is the
sampling (baud) rate,fc(k) is the Doppler frequency associated
with the kth tap, andJ0 denotes the zero-order Bessel function
of the first kind. We can approximate the time-variant behav-
ior of the tap ci(k) by a first-order AR model (see [21], [22])
ci+1(k) = J0 (αk) ci(k) +

p
(1− J 2

0 (αk))E[|c0(k)|2]ui(k). The
factor

p
(1− J 2

0 (αk))E[|c0(k)|2] ensures that the tapci(k) main-
tains the same power profile for all time. Collecting this recursion
for all taps yields

ci+1 = F cci +Gcui (32)

where
F c = diag

� J0(α1), · · · , J0(αL+1)
�

and

Gc = diag (
q

(1 − J2
0 (α1))E[|ci(1)|2], ...,

q
(1 − J2

0 (αL+1))E[|ci(L + 1)|2] )

We can use this dynamical relationship along with (31) to derive
a dynamical relationship for the impulse responseh. Specifically,
multiplying both sides of (32) byR and noting thatR†R = I 9, we
obtainhi+1 = Fhi+Gui, whereF = RF cR† and G = RGc.
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